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Abstract-Periodic fully developed fluid flow and heat transfer characteristics are obtained numerically 
for turbulent flow over three-dimensional arrays of heated square blocks deployed along one wall of a 
par~lel-plate duct. This confi~ration simulates forced convection cooling of electronic equipment. The 
high Reynolds number form of the k-e turbulence model is used for the computations. The computations 
are performed for the condition of uniform wall temperature, for a wide range of geometric parameters 
characterizing the array, for a range of Reynolds numbers from 104 to lo’, and for Prandtl number of 0.7. 
The results show that the friction factor is higher or lower than the values obtained from an empirical 
correlation for a parallel-plate duct depending on the geometric parameters and the Reynolds number. 
The cycle averaged Nusselt number is also higher or lower than the analytical values for a parallel-plate 
duct with one wall heated at a constant rate and the other wall insulated depending on the geometric 

parameters and the Reynolds number. 

INTRODUCTION As an extension of the analyses for laminar flow, 

IN CURRENT electronic packaging designs of low power 
rated electronic components on printed circuit boards, 
specific consideration is given to heat transfer analysis 
to achieve high heat dissipation rates and to limit peak 
temperature levels (e.g. Oktay et al. [l]). This concern 
has generated motivation for research studies in the 
forced convection cooling of electronic equipment 
containing printed circuit boards. In most of the recent 
literature, an array of heated square blocks deployed 
along one wall of a parallel-plate duct is used to model 
the circuit board. 

The authors (Asako and Faghri [2]) reported a 
three dimensional laminar heat transfer analysis of 
this problem under the condition where the blocks 
were at a prescribed uniform wall temperature. As an 
extension of this work, they (Asako and Faghri 131) 
computed the results of this problem under a different 
thermal boundary condition. It was assumed that a 
specific amount of heat was uniformly generated at 
the bottom surface of each block. These analyses were 
performed for the periodic fully developed region with 
the assumption of laminar flow. 

Experimental investigations of similar con- 

the authors (Faghri and Asako [9]) reported the 
results for turbulent flow using the high Reynolds 
number form of the k-8 turbulence model. The aver- 
age heat transfer coefficients and the friction factor 
were compared with the available experimental 
results. However, the computations were performed 
for a fixed set of geometrical parameters. The range 
of the Reynolds number of the computations did not 
coincide with that of the experiment and no direct 
comparisons could be made. However, the numerical 
results were located on an extended line of the exper- 
imental data. This is the motivation of the present 
work for a parametric study for a wider range of 
geometric parameters characterizing the array, for a 
range of Reynolds numbers from lo4 to lo’, and for 
a Prandtl number of 0.7. The turbulent model 
employed is the high Reynolds number form of the 
k-s turbulence model. The results are obtained for 
the condition of uniform wall temperature and are 
compared with the available experimental and ana- 
lytical results. 

FORMULATION 

figurations were carried out by Sparrow et al. [4-61, Description of the problem 
and Moffat et al. [7]. However, these investigations The problem to be considered in this study is 
were for a fixed or limited set of geometrical depicted schematically in Fig. 1. It involves the deter- 
parameters. The authors (Faghri et al. [SJ) reported mination of three-dimensional heat transfer and fluid 
experimental results for a wider range of geometric Row characte~stics for turbulent fog-conv~tion 
parameters. cooling of an array of square heat generating modules. 
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NOMENCLATURE 

AH flow cross section above modules q heat flux 

‘4, per-cycle heat transfer surface area Rl? Reynolds number, equation (8) 
B module thickness S intermodule gap 

c, specific heat of the fluid at constant T dimensionless temperature. equation (2) 
pressure t temperature 

f friction factor. equation (9) Il. bulk temperature, equation (3) 
H height of flow passage t, module surface temperature 
h local heat transfer coefficient, equation U, c, )I‘ velocity components 

(II) Li characteristic velocity. equation (7) 

jr, cycle averaged heat transfer coefficient, .Y, .1’, 1 coordinates. 
equation (12) 

K thermal conductivity Greek symbols 
k turbulence kinetic energy 11 per-cycle pressure gradient 
L plane dimension of square module l- diffusion coefficient 
+l mass flow rate per spanwise width ; wall-to-bulk temperature ratio 
NU local Nusselt number. equation (15) turbulence dissipation rate 
Num cycle averaged Nusselt number, 1 periodic parameter defined in Table 1 

equation (16) i. periodic parameter defined in Table 1 
n coordinate normal to the module II viscosity 
P production term lJI turbulent viscosity 

P pressure 1’ kinematic viscosity 

P’ periodic component of pressure P density 

P* redefined pressure 0 Prandtl number 

Q heat 9 dependent variables. 

The modules are positioned along one wall of a therm- The solution domain, with the assumption of per- 
ally insulated parallel-plate duct. The geometry of the iodic fully developed flow. is confined to a typical 
problem is specified by the module dimension (L), the module shaded in Fig. 1. As described by Pantankar 
module thickness (B), the inter-module gap (S), and rt al. [IO], the periodic fully developed flow is char- 
the height of the flow passage between the module acterized by a velocity field that repeats itself at cor- 
and the opposite wall of the duct (H). responding axial stations in successive cycles. Fur- 

thermore, in such a regime, the pressures of cyclically 
corresponding locations decrease linearly in the down- 

IUUI stream direction. The pressure, p. is expressed by 

For the case of uniform wall temperature boundary 
condition, the fluid temperature approaches the wall 

/ 
temperature in the fully developed region. Therefore. 
the following dimensionless temperature will bc 

X 

ID LX 

introduced. 

<> T(x,y,z) = [t(x,y.z)-tt,]/(t,-tl,) (2, 

where 

p(x,?‘. z) = -~k+p’(.x._v, z) (1) 
where fl is a constant, and p’(x, ,v. Z) behaves in a 
periodic manner from module to module. The term 8: 

represents the non-periodic pressure drop that takes 
place in the flow direction. 

immimr I 

fh - t,, = 
l.i 

(t-t,)Mid.YdJ: i 
/ :Y 

M‘ dx dll. (3) 

For the periodic thermally developed region, the 
dimensionless temperature satisfies the following 
relationship : 

L 

FIG. 1. Schematic diagram of array of rectangular modules 
qx, y, z) = 7-(.x, y, ,_ + L + S) 

deployed along one wall of a flat parallel plates duct. = T(.x,y,Z+2L+2S) = “‘. (4) 
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Table 1. Summary of equations solved 
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Equation 

Continuity 
x momentum 
y momentum 
w momentum 

where 

Energy 
Turbulence energy 
Energy dissipation 

where 

Q l- % 

1 0 0 
II I&R a(~~,,(a~/ax))/a~+a{~,,(a~/ax)~/a~+a{~~,(aw/a~)}ja~-ap*jax 
u AN a{~,,(au/ay)}/ax+ai~L,,(a~/a~)}/a~+a{~~~(a~/~~)}/a2-ap*/aY 
w PC,, a~~,,(a~iaz)~/ax+a~~,,(aojaz)}/a~+a{~~~~aw/az~}~~z-ap*~az+~ 

A 
P--p& 

(C)P-CC,pWk 

P = P,[2{ (auiax)'+(au/ay)2+(aW/az)*} +(auiay+a~iax)*+(aw/ax+aujaz)'+(a~jaz+awjay)'] 
A = [l-(aT/~z)+d(TT)/az-pwT]~+TT(1*+dl/dz) 

and 

and constants are 
C, = 0.09, C, = 1.44, C, = 1.92, Q = 1.0, gE = 1.3 and u, = 0.9 

Therefore, the fully developed dimensionless tern- On the symmetric planes : 
perature field repeats itself at corresponding axial 
stations in successive cycles. u = au/ax = awlax = aqax = 0. (6) 

Conservation equations 
The governing equations to be considered are the 

time-averaged continuity, momentum, and energy 
equations. An eddy viscosity model is used to account 
for the effect of turbulence. The model chosen is the 
high Reynolds number form of the k-c (turbulence 
kinetic energy-turbulence dissipation rate) model. 
Constant thermophysical properties are assumed, and 
natural convection is excluded. The (2/3)kp term is 
absorbed in the pressure gradient by redefining the 
pressure p*. Then, the governing equations can be 

written in the common form as : 

a(pu~)iax+a(pv~)iay+a(pw~)iaz 

= s, +a(r,,(a~/ax))/ax+a(r,,ca~iay))iay 

+w-e,cvbw~~a~ (5) 

where 4 stands for different dependent variables (u, 
v, w, T, k, and E). The equations used in this paper 
are summarized in Table 1. The terms A and 1 are 
periodic parameters arising from the assumption of 
constant wall temperature boundary condition. These 
values are determined as a part of the solution process. 

To complete the formulation of the problem, the 
boundary conditions remain to be discussed. These 
are 

On the duct walls : 

As a preliminary study, the wall function treatment 
for the fully turbulent region proposed by Launder 
and Spalding [ 1 l] is employed. Namely, the universal 
velocity profile is used for the u, v, w equations. 
For the k equation, the diffusion flux to the wall is 
considered to be zero. For the E equation, the value 
at the near-wall grid point is fixed. As an example, the 
wall function treatment for the top surface of the 
module is summarized in Table 2. The wall function 
treatment for the other surface is similar to one for 
the top surface. At the inlet and outlet ends of the 
solution domain, periodic conditions are imposed. 

Table 2. Summary of wall function treatment 

For w equation : 

rs=py+/w+ 

where 

and where 

y+ < 11s:w+ = y+ 
y+ > ll.S:w+ =2.51n(9y+) 

y+ = pk”‘C;“‘y/p 

For k equation : Te = 0 
For E equation : E = (C,k2)3’4/(0.4y) 
For T equation, 

~+<1is:r,=~/~ 

Y+ > 11.5: rs =~y+/{u,[2.5ln(9y+)]+@} 

On the module surfaces : 

u=v=w=O, T=O 

where 

Q, = 9(a/(r, - l)(&) - “4 
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Namely, inlet conditions are set equal to outlet con- 
ditions for all the variables. 

Numerical solution 

The control volume approach is adopted to solve 
equation (5) by a finite difference scheme. The dis- 
cretized procedure of the equations is based on the 

power law scheme of Patankar [12]. and the dis- 
cretized equations are solved by using a line-by-line 
method. Alternating sweeps of cyclic TDMA in the : 
direction and normal TDMA in the x and y directions 

are applied. The pressure and velocity are linked by 
the SIMPLE algorithm of Patankar [13]. The threc- 
dimensional computer code used for this problem is 
a modified version of the two-dimensional computer 
code SIMPLE. Computations are performed with the 
same grid distribution (I 6 x 22 x 30) which was used 
in the previous work. These grid points arc distributed 
in a non-uniform manner with higher concentration 
of grids closer to the walls. The grid independence test 

results were reported in the author’s previous paper 
(Faghri and Asako [9]). 

The values of fi have to be specified prior to the 
initiation of the numerical solution. These values are 

selected such that the calculated Reynolds numbers 
range from 1 O4 to 10’. In some literature (e.g. Patankar 
and Prakash [14] and Lee et al. [15]) dealing with 
the periodic fully developed problems, the Reynolds 
number is also specified. In this case, the viscosity or 
the value of /r is adjusted to obtain the solution for 
a given Reynolds number. However, in the present 
investigation the Reynolds number is not specified 
prior to the initiation of the numerical solution. 

The convergence criterion used in this computation 
was that the value of the mass flux residuals (mass 
flow) in each control volume took a value under IO I”. 
The under-relaxation factors for the velocity. the press- 

ure. the turbulence kinetic energy, and the energy 
dissipation rate were set to 0.5, 0.8, 0.4, and 0.4, 
respectively. About 4000-14000 iterations were 
required to obtain a converged solution for the vel- 
ocity field. The number of the iterations depended on 
the Reynolds number and geometric parameters. The 
converged velocity field was used as an input to the 

temperature field calculation, which converged to 
within 300 iterations. 

Reyno1d.s number. pressuw drop, and Nussrlt numbrr 

Attention will now be focused on the calculation of 
the Reynolds number. Since the gap height H between 
the modules and the opposite wall of the duct is 
regarded as the main passage for fluid flow, a charac- 
teristic velocity is evaluated from 

p@ = riz;‘A,, (7) 

in which A,, is the flow cross section associated with 
the gap height H and viz is the mass flow rate per span- 
wise width, Consistent with the foregoing, H will 
be selected as the characteristic dimension in the 
Reynolds number to obtain 

Re = pM‘H//i = tizi[p( A,,; H)] (8) 

where the quantity (A,,/H) is the span-wise width o! 
the flow passage. 

Another quantity is the calculation of pressure 

drop. It is of practical interest to compare this quan- 
tity with the corresponding value obtained for the 
straight duct. The friction factor f’is defined as 

f= ~(2H)/[(pr?):‘?(. (9) 

Since the Reynolds number is based on H, the friction 
factor by this definition for laminar Hagen-Poiseuille 
flow can be expressed as 

.f = 48/ Re. ( 10) 

The local heat transfer coefhcicnt h and cycle 

average heat transfer coefficient k,, will be defined as 

h = qi(t, - th) (II) 

A,,, = QiA,\ (t, - t,,) (12) 

where L/ is the local heat flux, .4, is the per-cycle 

transfer surface area, equal to L’ + 4BL, Q is the hcat 
transfer rate from the module to the fluid per cycle, 
and (f, - r,,) is the average wall-to-bulk temperature 
difference. The log mean temperature difference is 
expressed by 

t,% -t,, = (t* - th); = “(1 -:,) / [- !“I+‘idr) (13) 

where 

(14) 

The Nusselt number expressions obtained by 
assuming log mean temperature difference with the 
wall function treatment are as follows : 

Nu = h(ZH)/K = -2H(at/~n),:(t,-t,,) 

= 2HjT,/(pLja)](T,/n,) (If) 

Nu,,, = h,(ZH)jK 

=2H(-~;‘id;)[c,tizjK 

where FI is the coordinate normal to the heated surface, 
K is the thermal conductivity, and the suffix 1 indicates 
the first internal grid point near the wall. 
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RESULTS AND DISCUSSION 

The geometry of the problem is specified by the 
module dimension (L), the module thickness (B), 
the inter-module gap (S), and the height of the flow 
passage between the module and the opposite wall of 
the duct (N). If L is chosen as a characteristic length, 
then the dimensionless geometric parameters in the 
problem are B/L, S/L, and H/L. The computations 
are performed for B/L = 318 and l/Z, and for 
S/L = l/2, l/3, l/4, and l/5. The values of 5/S, 318, 
and l/4 are selected for H/L for the case of B/L = 3/8 
and 314, l/2, and l/4 are selected for H/L for 
B/L = l/2. In this paper, a value of 0.7 is used for the 
Prandtl number, rr, and the values chosen for /? are 
selected such that the cakuiated Reynolds numbers 
range from lo4 to 105. 

Velocity projile 
The locations of the vertical planes at z = 0, L/2, 

L, and L-t S/2 are shown speckled in Fig. 2. The 
representative profiles of the velocity component w 
for B/L = l/2, S/L = l/3 and H/L = l/4 at these 
planes for Re = 2.91 x lo4 are presented in Figs. 3(a)- 
(d). As seen from these figures, the magnitude of the 
w velocity component in the inter-module gap in the 
stream-wise direction is shghtly faster than that over 
the module. Comparing Figs. 3(a)-(d), it can be seen 
that the velocity profiles at each plane are almost the 
same with the exception of the profile in Fig. 3(d). In 
this profile a very weak reverse flow can be seen in 
the inter-module gap in the span-wise direction. It is 
noteworthy that the velocity profile for the turbulent 
flow is flat compared with that for the laminar flow. 

From the characteristics of the velocity profiles, it 
can be easily predicted that the fluid flow in the inter- 
module gap in the stream-wise direction plays a role 
of decreasing the friction factor. However, the exist- 
enCe of the inter-module gap in the span-wise direc- 
tion will increase the turbulence and it results in an 
increase of the friction factor. Similar characteristics 
for a two-dimensional problem were reported in the 
literature by Knight and Crawford [16]. 

e 

FIG. 2. Schematic view of the location of planes in Fig. 3. 

r 
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(a) 

(d) 

FIG. 3. Velocity profiles at vertical planes for B/L = l/Z, 
S/L = l/3, H/L = l/4 and Re = 2.91 x 104: (a) z = 0, (b) 

z = L/2, (c) z = L, and (d) z = L+S/2. 

Friction factor 
The friction factor, x for B/L = 318, S/L = 114 and 

H/L = S/8 is compared with the experimental data 
obtained by Sparrow et al. [4] in Fig. 4. A good 
agreement between experimental and numerical fric- 
tion factors can be seen. The empirically obtained 
correlation of Beavers et al. [ 171 for the turbulent flow 
in a parallel-plate duct is also plotted in the figure. 
The friction factor for the Hagen-Poiseuille laminar 
flow of a duct of height His also plotted in this figure. 
The Reynolds number is based on the duct height, H, 
so that the friction factor for the ~agen-Po~~uille 
flow can be expressed by f = 48/Re. Since the friction 
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(= 48/R?) 
. EXPerl'IIWta~ Ddtd '?T 

sQ3rrm et ai. (7952 

v- 

LXperlfllentdllY Obtalned Correlatlor 
far Parallel Plates Duct 
f = 0.412 Rc-'.~ 
[Beaver> et (!I_ t14il)I 

0.01 1 1 1111111, / /,I,, / / 11.3 

102 103 lod i ,i 
Re 

FIG. 4. Comparison of friction factors with previous data for B/L = 3:8, S/L = l/4. and If, L = 5:8 

factor is based on the characteristic velocity, M‘. it is gap generates turbulence and it results in an increase 

lower than the values for the parallel-plate duct in the of the friction factor. In this case, the friction factor 

laminar region because of the existence of the flow is higher than that for the parallel-plate duct. 

in the inter-module gap in the streamwise direction. The results for the friction factors for B/L = 3/8 
However, in the turbulent region, the inter-module and l/2 are plotted in Figs. 5 and 6 as a function of 

0.01 

5 

0.1 

L 

FIG. 5. Friction factor, ,f. as a function of Reynolds number for B/L = 318 



Study of turbulent three-dimensional heat transfer 475 

0.06, I , , , > , , r lO.O6 

Is/L-1121 
H/L=3/4 

H/L=3/4 

L Beavers et al. (1971), , , 

- piiq 105 

H/L-3/4 

0.01 - 
104 105 

Re 

FIG. 6. Friction factor, f, as a function of Reynolds number for B/L = l/2. 

Reynolds number with the height of the flow passage 
as a curve parameter. The empirically obtained cor- 
relations of Beavers et al. [17] for turbulent flow in a 
parallel-plate duct is also plotted in the figures. As 
expected, the friction factor is higher or lower than 
that for the parallel-plate duct depending on the geo- 
metric parameters and the Reynolds number. The 
friction factor decreases with a decrease in the height 
of the flow passage because of the existence of the flow 
in the inter-module gap in the stream-wise direction. 
This tendency is accentuated in a case of a wide inter- 
module gap (S/r. = l/2) and a thick module 
(B/L = l/2). As seen from the figure, the friction 
factor decreases with the Reynolds number. However, 
it has a weak dependency on the Reynolds number 
compared with the correlation for parallel-plate duct. 

Local Nusselt number 
The local Nusselt number on each surface of the 

rectangular module for B/L = l/2, S/L = l/3, 
H/L = l/4, and Re = 2.91 x lo4 is shown in Fig. 7. 
In this figure, the local Nusselt number on the top 
surface, the front surface, the side surface, and the 
rear surface of the module is shown in parts (a)-(d), 
respectively. The corners are marked with letters such 
as A, B, . in a module in Fig. 8. As seen from the 

figure, the Nusselt number values at the corners A 
and B are high. This tendency is similar to that for 
the laminar flow. The Nusselt number on the front 
and rear surfaces are lower. In other words, the front 
and rear surfaces do not contribute to the heat transfer 
from the module. This result can be easily expected, 
since the recirculation in the inter-module gap is very 
weak. 

Cycle averaged Nusselt number 
The cycle averaged Nusselt number, defined by 

equation (16), is plotted as a function of Reynolds 
number in Figs. 9-12 with the height of the flow pass- 
age as a curve parameter for a number of intermodule 
gap spacings. In the figures, an analytical result by 
Kays and Leung [18] for fully developed turbulent 
flow in a parallel-plate duct with one wall heated at a 
constant rate and the other wall insulated, is also 
plotted. Although the thermal boundary condition 
used for the analytical problem is different from the 
one used for the present numerical analysis, the Nus- 
selt number is higher or lower than this analytical 
value depending on the geometric parameters and 
Reynolds number. The Nusselt number decreases with 
a decrease in the height of the flow passage. This 
tendency is slightly accentuated in the case of a wide 
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200 

r NY 

(Cl 

C G 

200 
i 

FIG. 7. Local Nusselt number for B/L = l/2, S/L = l/3, 
H/L = l/4 and Rr = 2.91 x IO4 on (a) top, (b) front, (c) side, 
and (d) rear surfaces (refer to Fig. 8 for letters at the corners). 

intermodule gap (S/L = l/2). It can be seen from 
the figures that the Nusselt number decreases with a 
decrease in the intermodule gap. 

CONCLUDING REMARKS 

Periodic fully developed fluid flow and heat transfer 
characteristics are obtained numerically for turbulent 
flow over three-dimensional arrays of heated square 
blocks deployed along one wall of a parallel plates 

FIG. 8. Schematic view of a module and the nomenclature 
used in Fig. 7. 

‘0 
10“ 

Rk? 
105 

FIG. 9. Cycle-averaged Nusselt number, Num, as a function 
of Reynolds number for B/L = 318 (S/L = 112 and 1’3). 

duct. The computations were performed for a wide 
range of the geometric parameters characterizing the 
array and for a range of Reynolds numbers from 
IO4 to 105, and for Prandtl number of 0.7. The main 
conclusions are as follows : 

1 10 

104 Re 
105 

FIG. 10. Cycle-averaged Nusselt number, Num, as a function 
of Reynolds number for B/L = 3/U (S/L = l/4 and 115). 
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KY 

7 

t 102 
I? 

103 

: 
z 

Kays and Leung (19631 

- 10 

104 105 
Re 

FIG. 11. Cycle-averaged Nusselt number, Num, as a function 
of Reynolds number for B/L = l/2 (S/L = l/2 and l/3). 

(a) The friction factor for arrays of rectangular 
modules agrees well with the available experimental 
values and it is higher or lower than that for the 
parallel-plate duct depending on the geometric par- 
ameters and the Reynolds number. 

(b) The friction factor decreases with a decrease in 

lo31=----7 
a 
; 
2 102 
w 

% 

FIG. 12. Cycle-averaged Nusselt number, Num, as a function 
of Reynolds number for B/L = l/2 (S/L = l/4 and l/5). 

the height of the flow passage because of the existence 
of the flow in the inter-module gap in the stream-wise 
direction. This tendency is accentuated in a case of a 
wide inter-module gap (S/L = l/2) and a thick mod- 
ule (B/L = l/2). 

(c) The friction factor decreases with the Reynolds 
number. However, it has a weak dependency on the 
Reynolds number compared with the correlation for 
parallel-plate duct. 

(d) The cycle averaged Nusselt number decreases 
with a decrease in the height of the flow passage. This 
tendency is slightly accentuated in the case of wide 
inter-module gap (S/L = l/2). 

(e) The cycle averaged Nusselt number decreases 
with a decrease in the intermodule gap. 

(f) The cycle averaged Nusselt number is also 
higher or lower than the analytical value for the paral- 
lel-plate duct with one wall heated at a constant rate 
and the other wall insulated depending on the geo- 
metric parameters and the Reynolds number. 
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3. 
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